
Contents
Mathematical Computations in Java 2

Types . 2
Definitions . 2
Primitives . 4
Wrapper classes . 4
Classes for extended range or precision 5

Basic operations . 6
Arithmetic operators defined by the Java language 6
Sign-related operations . 6
Rounding operations . 7
Modulo operation (remainder) 9

Exponents, roots, and logarithms . 10
Sequences . 11

Definition . 11
Length . 12
Recurrence relations . 13
Sum . 13
Product . 14

General case . 14
Factorial . 15

Sets . 15
Definition . 15
Cardinality . 16
The empty set . 16
Membership . 16
Equality . 17
Subsets & supersets . 17
Set-builder notation . 18
Union . 20
Intersection . 20
Difference (relative complement) 21
Symmetric difference . 21

Probability . 22
Independent events . 22
Disjoint events . 22
Naïve probability . 23
Uniform discrete probability distributions 23
Non-uniform discrete probability distributions 24
Continuous probability distributions 24

Combinations & permutations . 25
Trigonometry . 27

Right triangles . 27
Polar-Cartesian relationship . 28

1

Mathematical Computations in Java

While advanced mathematics is generally not required for general-purpose pro-
gramming, an understanding of arithmetic computations, exponents & roots,
logarithms, and basic algebra is an essential part of a solid foundation for pro-
gramming. When supplemented by a few key concepts from number theory, set
theory, probability, and trigonometry, such an understanding can dramatically
expand the set of career paths (and career longevity) available to a programmer.

Summarized below are the Java data types (those defined in the language, and
those provided by the standard library) used in mathematical computations,
along with mathematical concepts and computations you may encounter in the
assignments and projects of this bootcamp. Most of these are defined in math-
ematical terms, and accompanied by short code snippets.1

Fair warning: Though I try to avoid it, I’m overly verbose in some moments,
and insufficiently rigorous in others. On the other hand, I’m almost always open
to requests for clarification and suggestions for improvement.

Types

Definitions

• Integer

An integer is a number without a fractional part—for example, 7, -3, and
0 are all integers, while 1.5 is not. The set of all integers (often referred to
as Z) consists of the natural numbers (1, 2, 3, …), referred to collectively
as N, their additive inverses (-1, -2, -3, …), and the number 0.

The Java language defines several primitive integer data types; addition-
ally, the Java standard library defines wrapper object types corresponding
to nearly all of the integer primitive types. In use, these types differ from
each other primarily in the range of values that can be represented by
each.

• Rational number

A rational number is a number that can be expressed as a fraction p/q,
where p and q are both integers, with q ̸= 0. The set of rational numbers,
denoted Q, is a superset of Z (the set of integers).

1The Java classes and interfaces referred to in the code snippets and accompanying text
are members of the java.lang, java.math, java.util, and java.util.stream packages of the
Java standard library. Since all classes and interfaces contained directly in the java.lang
package are automatically imported by the Java compiler, these classes can be referenced
directly without an import statement. Classes and interfaces in other packages must be
imported, or referenced via fully-qualified names; however, for the sake of clarity and brevity,
this requirement is ignored in the code snippets.

2

Neither the Java language nor the Java standard library has direct support
for rational numbers, but there are many 3rd-party libraries (including the
widely used Apache Commons Math library) that do.

• Real number

A real number is a value of a continuous, rather than discrete, quantity.
We can think of real numbers as those numbers that can represent exactly
any finite value along a number line, from 0 at the center, extending (in
opposite directions) towards −∞ and ∞. The set of all real numbers is
usually denoted as R, and is a superset of the set of rational numbers, Q.

The Java language and standard libraries represent real numbers (exactly
or approximately) via 2 different approaches:

– Fixed-precision floating-point, consisting of 3 components:

∗ A sign (+1 or -1).

∗ An exponent (positive or negative).

∗ A mantissa, a fractional value in the interval [1, 2). (Under cer-
tain conditions, this is interpreted as a fractional value in [0, 1).)

The value represented by these components is sign · mantissa ·
2exponent.

– Arbitrary-precision floating-point, with 2 components:

∗ An arbitrary-length integer (positive or negative); this is some-
times called the unscaled value.

∗ A scale exponent (positive or negative).

The value represented is unscaled · 10−scale. This can be understood
simply as an integer shifted to the right or left by some number of
decimal digit places.

It’s important to observe that, even with the arbitrary-precision represen-
tation, the precision of encoded values has limits: there are an infinite
number of real values that cannot be represented exactly with either of
the above approaches. It’s also interesting to note that while most formal
definitions of real numbers do not include −∞ and ∞, the floating-point
representations used by Java and many other programming languages are
capable of representing −∞ and ∞, as well as NaN (“not a number”—e.g.
the value resulting from 0/0).

• Complex numbers

A complex number takes the form z = a + bi, where a and b are real
numbers, and i =

√
−1. This gives us a definition of the set of complex

numbers, C, as

3

http://commons.apache.org/proper/commons-math/

C =
{

a + bi | a, b ∈ R and i =
√

−1
}

.

(The notation used here is set-builder notation, described in more detail
below.)

Neither the Java language nor the Java standard library supports complex
numbers directly; however, Apache Commons Math library does, as do
some other 3rd-party libraries.

Primitives

The Java language defines 5 integer primitive types (including char, which is
treated as an integer type for numeric computations, and as a single Unicode
character in string-related operations), and 2 floating-point primitive types. Val-
ues of these 7 types, along with those of the primitive boolean type, are not
objects; they have no behavior (methods), only state (data). However, these
primitive types are the basic building blocks—not only of their corresponding
wrapper types, but also (indirectly) of all Java classes.

• Integer

Type Size (bits) Range (inclusive)
byte 8 −128 . . . 127
char 16 0 . . . 65,535
short 16 −32,768 . . . 32,767
int 32 −231 . . . (231 − 1)
long 64 −263 . . . (263 − 1)

• Floating-point

Type Size (sign/exponent/mantissa bits) Range Sig. digits
float 1/8/23 (−2128, 2128) ~7
double 1/11/52 (−21024, 21024) ~16

Wrapper classes

The java.lang package of the Java standard library includes a wrapper class
for each of the primitive types defined in the Java language. Since these are ob-
ject types, rather than primitive types, they can (and do) define methods. The
wrapper classes include methods for parsing and constructing string represen-
tations of numeric values, testing for special values, and performing additional

4

http://commons.apache.org/proper/commons-math/

operations not provided by the Java language itself. These classes also include
constants for the maximum and minimum values representable by the integer
types, and for the largest and smallest magnitudes representable by the floating-
point types.

Primitive type Wrapper class
byte Byte
short Short
int Integer
long Long
float Float
double Double

(Note that while the char primitive has a corresponding Character wrapper
type, the latter is not a subclass of java.lang.Number, and is thus not consid-
ered a numeric wrapper type.)

The Java compiler will, in many (but not all) cases, automatically generate code
to wrap a primitive in an instance of its corresponding wrapper type when the
latter is expected, or to unwrap a primitive from an instance of its wrapper
type when the former is expected. These operations are called auto-boxing and
auto-unboxing, respectively.

int a = 15;
Integer b = a + 10; // int value auto-boxed, assigned to Integer.
Integer c = a + b; // Integer auto-unboxed for addition; result

// auto-boxed for assignment.
int d = b * c; // Integers auto-unboxed for multiplication;

// result assigned to int.

Classes for extended range or precision

The following classes are found in the java.math package of the Java standard
library, and support extended range and precision integer and decimal values,
and operations on those values. Unlike the primitive and wrapper types, the
size of instances of these types is not fixed by definition, nor at compile time,
but depends on the values assigned to them, up to the maximum sizes shown
here.

Type Max. size (bits) Range (inclusive)

BigInteger 232 −2(231−1) . . . (2(231−1) − 1)
BigDecimal 32 + 232 −2(231−1) · 10(231) . . . (2(231−1) − 1) · 10(231)

5

Both BigInteger and BigDecimal have a maximum of 646,456,993 significant
digits. The smallest absolute value representable by BigDecimal is 10(1−231).

As you might infer from the above information, a BigDecimal instance is com-
posed of a BigInteger instance (the unscaled value), along with an int speci-
fying how many decimal digit places the BigInteger value should be shifted to
the right or the left (the scale).

Basic operations

Arithmetic operators defined by the Java language

The Java language defines several arithmetic operators—as well as bitwise, log-
ical, reference, and string operators. These are listed—along with their evalua-
tion precedence and other details—in Java Operators.

Sign-related operations

• Signum

The signum function (or sign function) of a number is simply a value
corresponding to its sign, where 1 denotes positive, -1 denotes negative,
and 0 denotes 0.

sgn (x) =


1, if x > 0
0, if x = 0

−1, if x < 0

The Java standard library provides the Math.signum method for obtaining
the sign of a floating-point value:

double x = 1.5;
System.out.println(Math.signum(x)); // 1.0
double y = -2.5;
System.out.println(Math.signum(y)); // -1.0

The Math.signum method can also be used with an integer value, which
will automatically be widened to a floating-point representation. Other-
wise, a ternary operation can be used—enclosing another ternary operation
or an unsigned shift right:

int a = 2;
int b = -3;
System.out.println(Math.signum(a)); // 1.0
System.out.println(Math.signum(b)); // -1.0
System.out.println((a == 0) ? 0 : ((a > 0) ? : 1 : -1)); // 1

6

https://ddc-java.github.io/assets/pdf/Java%20Operators.pdf

System.out.println((b == 0) ? 0 : ((b > 0) ? : 1 : -1)); // -1
System.out.println((a == 0) ? 0 : 1 - 2 * (a >>> 31)); // 1
System.out.println((b == 0) ? 0 : 1 - 2 * (b >>> 31)); // -1

• Absolute value

The absolute value of a number is the distance from the origin (zero) to
that number, without regard to direction (i.e. the distance is always non-
negative).

|x| =

{
x, if x ≥ 0

−x, if x < 0

We can view the absolute value and the signum function as complementary
operations:

x = sgn (x) · |x|

In Java, the absolute value of an integer or floating-point value can be
computed with the Math.abs method. Alternatively, the overhead of a
method call can be avoided (at the cost of reduced code clarity) by using
a ternary operation:

double x = 1.5;
System.out.println(Math.abs(x)); // Prints 1.5.
double y = -2.5;
System.out.println(Math.abs(y)); // 2.5
System.out.println((y >= 0) ? y : -y); // 2.5

Rounding operations

• Floor

The floor of a number is the largest integer that is less than or equal to
that number. In other words, the floor of a number is the result obtained
by rounding that number down towards −∞.

⌊x⌋ = max {m ∈ Z | m ≤ x} .

(The notation used here is set-builder notation, described in more detail
below.)

The Java standard library method Math.floor is used for floor rounding
of floating-point values to integer values:

7

double x = 1.5;
System.out.println(Math.floor(x)); // Prints 1.
double y = -2.5;
System.out.println(Math.floor(y)); // Prints -3.

Java also provides the Math.floorDiv method, which performs integer
division with automatic floor rounding.

• Ceiling

The ceiling of a number is the smallest integer that is greater than or
equal to that number. In other words, the ceiling of a number is the result
obtained by rounding that number up towards ∞.

⌈x⌉ = min {m ∈ Z | m ≥ x} .

The Math.ceil method in the Java standard library can be used to per-
form ceiling rounding:

double x = 1.5;
System.out.println(Math.ceil(x)); // Prints 2.
double y = -2.5;
System.out.println(Math.ceil(y)); // Prints -2.

• Truncation

While not as common as floor or ceiling in mathematics, truncation—or
rounding towards zero—is useful in many computational problems. The
simplest way to define this operation is in terms of the floor and ceiling
operations:

trunc (x) =

{
⌊x⌋ , if x ≥ 0
⌈x⌉ , if x < 0

Some programming languages have a function specifically for truncation.
In Java, however, truncation is performed implicitly when casting a
floating-point value to an integer-type value.

double x = 1.5;
System.out.println((int) x); // 1
double y = -2.5;
System.out.println((int) y); // -2

Also, when an integer-type dividend is divided by an integer-type divisor,
using the Java / operator, the result is automatically truncated.

int a = 7;
int b = 3;

8

System.out.println(a / b); // 2
System.out.println(a / -b); // -2

• Rounding to nearest integer

Rather than rounding towards −∞ (floor), ∞ (ceiling) or 0 (truncate),
we often want to round to the integer closest to the original value. This
is usually what is meant when we refer to rounding without specifying a
rounding strategy.

But how should we round a value equidistant from its two nearest
integers—for example, should ½ be rounded to 0, or to 1? In the method
shown below, the Java library uses the round half up convention, in which
a tie results in rounding towards ∞. This is expressed mathematically as

round (x) =
⌊

x + 1
2

⌋
=

⌈
⌊2x⌋

2

⌉
The Java standard library provides the Math.round method to support
nearest-integer rounding using the round half up convention:

double x = 1.25;
double y = 2.5;
double z = -3.5;
System.out.println(Math.round(x)); // 1
System.out.println(Math.round(y)); // 3
System.out.println(Math.round(z)); // -3

Modulo operation (remainder)

The modulo operation is the computation of the remainder obtained after divi-
sion of one number by another. Typically, this is defined as

a mod n = a − n
⌊ a

n

⌋
, where n ∈ N (1)

Alternatively, we may define it as

a mod n = a − n · trunc
(a

n

)
, where n ∈ N (2)

In number theory, the divisor (or modulus) is generally assumed to be a positive
integer, as shown above. In computation, it is often useful to broaden this
assumption, allowing the divisor to be positive or negative, and integer or real-
valued. (In any event, the result of the modulo operation using a divisor of 0 is
generally undefined.)

9

Java has two mechanisms for performing the modulo operation: the
Math.floorMod method, which implements (1), and the % operator (in-
cluded in [Java Operators]({{ “/assets/pdf/Operators%20(tabloid).pdf” |
relative_url }})), which implements (2). This distinction leads to the two
approaches giving different results when the signs of the dividend and divisor
are different. (Both % and Math.floorMod allow negative values for both the
divisor and the dividend—however, Math.floorMod only allows integer-type
dividend and divisor, while % supports floating-point values as well.)

int a = 7;
int b = 3;
System.out.println(a % b); // 1
System.out.println(Math.floorMod(a, b)); // 1
int c = -3;
System.out.println(a % c); // 1
System.out.println(Math.floorMod(a, c)); // -2

Exponents, roots, and logarithms

Assume we have 3 numbers, b, p, and c, with

bp = c (3)

We might read this as ”b raised to the pth power equals c.”

If we recognize that (am)n = amn, and if p ̸= 0, we might solve for b in this
fashion:

(bp)1/p = c1/p

b = c1/p

By definition, and by the conventions used with the √ notation, this gives us

b = p
√

c (4)

Thus, one solution to (3) is found in (4). We can read the latter as ”b equals
the nth root of c.” We also see that computing the nth root of a number is the
same as raising that number to the (1/n)th power; in general, this is how we
compute roots in Java.

If b > 0 and c > 0, we can express (3) in terms of a solution for n:

10

logb (bn) = logb c

n logb b = logb c

n = logb c (5)

Finally, an identity of logarithms tells us that we can express the base-b log-
arithm of (5) using a different base—for example, e, the base of natural loga-
rithms:

logb c = ln c

ln b
(6)

The Math class of the Java standard library defines the log (natural logarithm),
log10 (base-10, or common, logarithm), pow (power), and exp (ex) methods to
perform the above operations.

double x = 10;
double y = 2;
double z = Math.pow(x, y);
System.out.println(z); // 100.0
System.out.println(Math.pow(z, 1 / y)); // 10.0
System.out.println(Math.log10(z)); // 2.0
System.out.println(Math.log(z)); // 4.605170185988092
System.out.println(Math.log(z) / Math.log(x)); // 2.0
System.out.println(Math.exp(Math.log(z))); // 100.00000000000004

There are also a number of methods in the Math class that implement special-
case power, root, and logarithmic computations. These include sqrt (x1/2 or√

x), cbrt (x1/3 or 3
√

x), expm1 (ex − 1), log1p (ln (1 + x)), and scalb (x · 2y).

Sequences

Definition

A sequence is an ordered, enumerable collection of values. While it may not be
obviously the case, such a collection need not be finite in size—neither from a
theoretical standpoint, nor a practical standpoint. Conversely, a sequence may
also be empty—that is, its length can be 0.

The values in a sequence are generally homogeneous (all of the same type), and
are not necessarily unique—that is, a given value may appear more than once
in a single sequence. Each value in a sequence can be referenced by its index, or
position. Typically (but not always), index values begin at either 0 (zero-based)
or 1 (one-based). So, depending on the context, the finite sequence A of length
n might be defined as

11

A = (a0, a1, . . . , an−1) ,

or

A = (a1, a2, . . . , an) .

In Java, finite sequences are most often implemented as arrays or lists. A Java
array is of finite and fixed length, while a list (i.e. some object of a class that
implements the List interface) is of finite, but not necessarily fixed, length.
Arrays are structures supported directly by the Java language itself, while the
List interface (as well as several implementations, including ArrayList and
LinkedList) is defined in the Java standard library; thus, the syntax for using
an array is a bit more direct than that for a list. Both, however, use zero-based
indices.

int[] dataArray = {10, 5, 3, 2, 5}; // Declare & initialize.
System.out.println(dataArray[2]); // 3
dataArray[3] = 20; // {10, 5, 3, 20, 5}.
System.out.println(dataArray[3]); // 20

List<Integer> dataList = new LinkedList<>(); // Create empty List.
Collections.addAll(dataList, 10, 5, 3, 2, 5); // Populate the list.
dataList.set(4, 20); // {10, 5, 3, 2, 20}.
System.out.println(dataList.get(4)); // 20

Another key difference between arrays and lists is that an array can be declared
to have elements of any type, whether primitive or object, while a list can
only contain instances of object types. (Fortunately, as implied in Wrapper
classes, we can add a primitive value to a list that is declared to contain the
corresponding wrapper type; the compiler simply auto-boxes the primitive value
into an object of the wrapper type.)

While the Java language doesn’t have explicit, built-in support for it, we can
implement an infinite sequence in Java—for example, by writing our own imple-
mentations of the Iterable and Iterator interfaces. An example of such an
implementation is beyond the scope of this document, but we’ll learn how to
implement these interfaces in the bootcamp.

Length

The length of a sequence is simply the number of terms in that sequence. Of
course, this is not necessarily the same as the number of distinct terms in the
sequence, since a term may appear multiple times in the same sequence.

Implementations of the Java standard library interface Collection (which is
extended by List) include the size method, which returns the number of items

12

in that collection. Since that method is declared with a return type of int,
and since int is used for element indices in List, this implies that all instances
of Collection are limited to a maximum of

(
231 − 1

)
, or Integer.MAX_VALUE

elements.

If a sequence is implemented in Java code as an array, then the length property
(not a method) of the array contains the number of elements in the sequence.
As with the Collection.size(), the length property is an int; thus, arrays (and
sequences implemented with arrays) are limited to a maximum of

(
231 − 1

)
, or

Integer.MAX_VALUE elements.

Recurrence relations

Some sequences are defined (at least in part) according to a recurrence relation
between the terms of the sequence. In this type of definition, the value of the
nth term of a sequence is defined as a function of the preceding terms. Typically,
this type of definition is used for infinite sequences.

Given the sequence A,

A = (a0, a1, . . .) ,

a recurrence relation may be defined (in very general terms) as

an = f (a0, a1, . . . , an−1) .

In most cases, the function f isn’t a function of all the preceding terms, but of a
small number of terms immediately preceding an. Also, note that the recurrence
relation usually doesn’t define A completely; the definition generally includes
one or more initial values, as well. For example, the well-known Fibonacci
sequence may be defined as

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , where n > 1

Sum

We use the summation symbol,
∑

, to denote the sum of the terms of a sequence,
e.g.

n∑
i=1

ai = a1 + a2 + . . . + an

13

In Java, if a given finite sequence is implemented with an array, or with a
List instance—or with any instance of a class that implements the Iterable
interface—then we can sum the terms of the sequence in several ways; one is
via an enhanced for loop:

int[] fib10 = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34}; // 1st 10
// Fibonacci terms.

int sum = 0;
for (int f : fib10) {
sum += f;

}
System.out.println(sum); // 88

Another approach, available in Java 8 and later versions, is to leverage the
stream framework, e.g.

int[] fib10 = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34};
int sum = IntStream.of(fib10).reduce(0, (a, b) -> a + b);
System.out.println(sum); // 88

Product

General case

The product of terms in a sequence is denoted by
∏

:

n∏
i=1

ai = a1 · a2 · . . . · an

Just as we can compute the sum of an array or Iterable instance with an
enhanced for loop in Java, we can use the same mechanism to compute the
product. (Depending on the type of values in the sequence, and the length of
the sequence, we should watch out for possible overflow.)

int[] lookSay6 = {1, 11, 21, 1211, 111221, 312211}; // 1st 6 terms
// of look & say.

long product = 1;
for (int a : lookSay6) {
product *= a;

}
System.out.println(product); // 9713843871995571

Again, one alternative approach (out of several) uses the streams framework:

int[] lookSay6 = {1, 11, 21, 1211, 111221, 312211};
long product = IntStream.of(lookSay6)

.asLongStream().reduce(1, (a, b) -> a * b);
System.out.println(product); // 9713843871995571

14

Factorial

The factorial of a non-negative integer n, denoted by n!, is a special case of a
sequence product, where the sequence is the positive integers less than or equal
to n:

n! =
n∏

i=1
i

Following the empty product convention, the product of zero terms is defined to
be equal to 1; therefore, 0! = 1.

Of course, we can use iteration to compute a factorial in Java, just as we can
for the general case of a sequence product; however, rather than an enhanced
for, we would typically use a basic or traditional for. (There are also other
techniques for computing n!, such as Stirling’s approximation, but a discussion
of these is beyond the scope of this document.) For example, we might compute
and display 20! with the following code.

long product = 1;
for (int i = 1; i <= 20; i++) {
product *= i;

}
System.out.println(product); // 2432902008176640000

The above is compact enough that we wouldn’t gain much economy of expression
by using the streams framework to compute a factorial. Nonetheless, we can use
streams if we want to. (Note that the example below uses mapToObj to convert
an IntStream to a Stream<BigInteger>; using the BigInteger type lets us
compute 21! or higher—much higher, in fact—without overflow.)

BigInteger product = IntStream.rangeClosed(1, 21) // (1, ..., 21).
.mapToObj(BigInteger::valueOf)
.reduce(BigInteger.ONE, (a, b) -> a.multiply(b));

System.out.println(product); // 51090942171709440000

Sets

Definition

In contrast to a sequence, a set is an unordered collection of objects—i.e. an
element of a set cannot generally be referenced by index or position, and when
iterating over the contents of a set, the order of iteration may not be known in
advance. Another important difference is that while a given object may appear
multiple times in some sequence, this is not the case, in any meaningful way, for
a set: an object is simply either an element of the set, or it is not. Adding an
object to the same set multiple times has no effect after the first addition.

15

https://en.wikipedia.org/wiki/Stirling%27s_approximation

As with a sequence, the elements of a set are generally homogeneous. A set may
also be finite (i.e. it contains a finite number of elements) or infinite.

The Java standard library includes the Set interface (extending the Collection
interface), as well as a number of classes implementing that interface (e.g.
HashSet, EnumSet, TreeSet), to provide set functionality. None of these classes
implement infinite sets, but infinite sets can be implemented (with some con-
straints) by writing our own implementation of Set.

While most of set theory is far beyond the scope of this document, some impor-
tant terms and notation conventions are defined below.

Cardinality

For a finite site, the cardinality (size) of the set is simply the number of elements
in the set. (For an infinite set, things get a bit more interesting.)

The cardinality of a Java set can be obtained from the size() method.

The empty set

The empty set, denoted by ∅, ∅, or {}, is the set containing no elements. For-
mally, there is a single empty set; in a mathematical context, we usually say
“the empty set”, rather than “an empty set”.

In Java, the Collections.EMPTY_SET constant refers to an immutable empty
set, and we can test any instance of a Set implementation with the isEmpty
method, to determine whether that set is empty. We can also use the size
method (declared by the Collection interface) to get the number of elements
in a set (the cardinality of the set); the cardinality of the empty set is 0.

Set set1 = Collections.EMPTY_SET; // Immutable empty set.
System.out.println(set1.size()); // 0
System.out.println(set1.isEmpty()); // true
Set<Integer> set2 = new HashSet<>(); // HashSet implements set.
System.out.println(set2.size()); // 0
System.out.println(set2.isEmpty()); // true
System.out.println(set1.equals(set2)); // true

Membership

The central relationship constituting a set is that between the set and its mem-
bers. An object is either an element of (in) a set or it is not, and in general,
a set can be completely characterized by its elements. We can assert that a
object is an element of a set with the ∈ symbol, or assert that an object is not
an element of a set with /∈:

16

1 ∈ N
−1 /∈ N

The contains method is used to test an object for membership in a Java set:

Set<Integer> set = Set.of(1, 2, 3); // Immutable set {1, 2, 3}.
System.out.println(set.contains(2)); // true
System.out.println(set.contains(4)); // false

Equality

Because sets are unordered, the only thing that matters, when comparing sets
for equality, is that both sets contain the same elements. In other words, 2 sets
are equal if and only if every element of the first is also an element of the second,
and vice versa. We might write this as

S = T ⇐⇒ (v ∈ S, ∀v ∈ T) ∧ (v ∈ T, ∀v ∈ S)

Here, ∀ means “for all”, and ⇐⇒ means “if and only if”. Thus, we have ”S
equals T if and only if v is an element of S, for all v in T , and v is an element
of T , for all v in S.

Java makes comparing sets for equality quite easy: All implementations of Set
in the standard library implement the equals method appropriately for set
comparison:

Set<Integer> set1 = Set.of(1, 2, 3);
Set<Integer> set2 = Set.of(3, 1, 2);
System.out.println(set1.equals(set2)); // true
Set<Integer> set3 = Set.of(1, 2, 3, 4);
System.out.println(set1.equals(set3)); // false

Subsets & supersets

One set is a subset of another if every element of the first is also an element of
the second; this relationship is denoted by ⊆. If there is at least one element of
the second that is not an element of the first (i.e. the 2 sets aren’t equal), then
the first is a proper subset (sometimes called a strict subset), indicated by the
⊂ symbol. Mathematically, we could define these relationships as

S ⊆ T ⇐⇒ v ∈ T, ∀v ∈ S

S ⊂ T ⇐⇒ (v ∈ T, ∀v ∈ S) ∧ (S ̸= T)

17

Note that by this definition, 2 sets that are equal are also subsets and supersets
of each other, but not proper subsets or supersets of each other. Also, note that
since the empty set has no elements, it trivially satisfies the conditions for being
a subset of all sets, and for being a proper subset of all sets other than itself.

We can easily define superset (and proper superset) in terms of the subset re-
lationship: one set is a superset (or proper supserset) of another if and only if
the second is a subset (or proper subset) of the first. The symbols used here are
those used for the subset relationship, with the direction reversed:

S ⊇ T ⇐⇒ T ⊆ S

S ⊃ T ⇐⇒ T ⊂ S

The Collection interface of the Java standard library declares the containsAll
method, which—when invoked on a set—tests for subset/superset relationships;
combining that with the equals method and the logical negation operator !
lets us test for proper subset/superset relationships:

Set<Integer> set1 = Set.of(1, 2, 3);
Set<Integer> set2 = Set.of(3, 1, 2);
System.out.println(set1.containsAll(set2)); // true
System.out.println(set1.containsAll(set2)

&& !set1.equals(set2)); // false (not a proper superset)
Set<Integer> set3 = Set.of(1, 2, 3, 4);
System.out.println(set3.containsAll(set1)); // true
System.out.println(set3.containsAll(set1)

&& !set3.equals(set1)); // true (a proper superset)

Set-builder notation

Set-builder notation is a set of conventions commonly used to describe a set.
Since this notation is quite convenient when defining many set theory concepts
and terms, we’ll illustrate some aspects of it before going further.

• Enumeration

The simplest type of set description in set-builder notation is enumera-
tion—that is, listing the members of a set, either element by element (ros-
ter method), or using ellipses for commonly understood ranges of values.
For example,

{2, 3, 5, 7, 11, 13, 17, 19}

is the set of prime numbers less than 20;

{1, 2, 3, . . .}

18

is the set of natural numbers.

Note that when using enumeration, it’s common to list the elements in
natural (usually ascending) order. However, this is not required; in any
event, the list order has no effect, since sets are not ordered.

• Predicates

When we use set-builder notation with a predicate to describe or define a
set, there are 2 parts inside the braces: a variable (sometimes with another
set specified, indicating the base values that the variable might take, prior
to evaluating the predicate); and a predicate, or logical condition, that a
value of the variable must satisfy, in order to be included in the set. These
parts are usually separated by a vertical bar (read as “such that”). For
example, the set of all even numbers can be described as

{x | (x ∈ Z) ∧ (x mod 2 = 0)}

The ∧ symbol means “and”, so we can read the above (in a rather overly
verbose fashion) as “the set of all x, such that x is an element of the set
of all integers, and the remainder when x is divided by 2 is equal to 0.”

We might describe the same set more simply as

{x ∈ Z | x mod 2 = 0}

We would read this as “the set of all integer x, such that the remainder
when x is divided by 2 is equal to 0.”

There are many other ways we might describe the same set; one more,
included here mostly to introduce a few more useful notation elements, is

{x | (∃k ∈ Z) [x = 2k]}

Here, we read ∃ as “there exists”, and the brackets after the parentheses
are read “where”. Putting it together, we have “the set of all x, such that
there exists some integer k, where x = 2k.” In other words, it is the set
of all numbers that are twice the value of an integer. (We don’t need to
specify that x is an integer, since 2 times the value of any integer is also
an integer.)

Java doesn’t support set-builder notation directly; however, that’s not the only
way to express the underlying concepts, and there are features in the Java
standard library for defining a set (or adding elements to a set) by enumeration,
and for filtering sets via predicates (or as shown below, the logical inverse of a
predicate—a condition under which elements are removed from a set). Thus, it’s

19

usually fairly straightforward to work from a definition in set-builder notation
to a Java implementation.

For example, we can use set-builder notation to describe the set of odd natural
numbers under 20:

{x ∈ N | (x < 20) ∧ (x mod 2 ̸= 0)}

Then, we can create this set using iteration and the removeIf method in Java
code:

Set<Integer> set = new HashSet<>();
for (int i = 1; i < 20; i++) { // Add 1 through 19 to the set.
set.add(i);

}
set.removeIf(x -> x % 2 == 0); // Remove even values.
System.out.println(set); // [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

Union

The union of 2 sets, denoted by ∪, contains only those objects that are elements
of either set (or both sets). We can express this using set-builder notation (with
the symbol ∨, meaning “or”) as

S ∪ T = {v | (v ∈ S) ∨ (v ∈ T)}

In Java, we construct a set as the union of 2 other sets by initializing the union
set with the elements of the first of other 2, and then adding to it the elements of
the second via the addAll method; since an object cannot be included multiple
times in the same set, duplicated values are ignored.

Set<Integer> set1 = Set.of(1, 2, 3);
Set<Integer> set2 = Set.of(1, 3, 4, 5);
Set<Integer> union = new HashSet<>(set1); // Initialize from set1.
union.addAll(set2); // Add set2 elements.
System.out.println(union); // [1, 2, 3, 4, 5]

Intersection

The intersection of 2 sets, denoted by ∩, contains only those objects that are
elements of both sets. We can express this as

S ∩ T = {v | (v ∈ S) ∧ (v ∈ T)}

20

In Java, we can construct a set as the intersection of 2 other sets by initializing
the intersection set with the elements of the first of the other 2, then using the
retainAll method to keep only those elements that are also elements of the
second.

Set<Integer> set1 = Set.of(1, 2, 3);
Set<Integer> set2 = Set.of(1, 3, 4, 5);
Set<Integer> intersection = new HashSet<>(set1); // Initialize from set1.
intersection.retainAll(set2); // Retain those also in set2.
System.out.println(intersection); // [1, 3]

Difference (relative complement)

The difference between 2 sets is the set containing only those elements of the
first that are not in the second. This is also called the relative complement of the
second set in the first (i.e. the intersection of the first set and the complement
of the second set), and is denoted by \.

S \ T = {v ∈ S | v /∈ T}

In Java, we can construct a set as the difference of 2 other sets by initializing
the intersection set with the elements of the first of the other 2, then using
removeAll to remove those elements that are also elements of the second.

Set<Integer> set1 = Set.of(1, 2, 3);
Set<Integer> set2 = Set.of(1, 3, 4, 5);
Set<Integer> diff = new HashSet<>(set1); // Initialize from set1.
diff.removeAll(set2); // Remove set2 elements.
System.out.println(diff); // [2]

Symmetric difference

The symmetric difference between 2 sets is the set containing only those objects
that are elements of either—but not both—of the sets. It is denoted by the
symbol △, and can be expressed in terms of union of the differences of the 2
sets:

S△T = (S \ T) ∪ (T \ S)

It can also be expressed as the difference between the union and intersection of
the 2 sets:

S△T = (S ∪ T) \ (S ∩ T)

21

We can use either of the above expressions as a guide to a Java implementation.
Here, we implement the second:

Set<Integer> set1 = Set.of(1, 2, 3);
Set<Integer> set2 = Set.of(1, 3, 4, 5);
Set<Integer> union = new HashSet<>(set1); // Initialize from set1.
union.addAll(set2); // Add set2 elements.
Set<Integer> intersection = new HashSet<>(set1); // Initialize from set1.
intersection.retainAll(set2); // Retain those also in set2.
Set<Integer> diff = new HashSet<>(union); // Initialize from union.
diff.removeAll(intersection); // Remove intersection elements.
System.out.println(diff); // [2, 4, 5]

Probability

Independent events

If events A and B have no effect on each other—that is, if the probability that
event B occurs (P (B)) is not affected by the occurrence (or lack of same) of
A, and vice versa, then the 2 events are independent. For example, if we toss a
coin twice, the outcome of each toss has no effect on the outcome of the other.

If we have 2 or more independent events, then the probability that all of the
events occur (their joint probability) is the product of their individual probabil-
ities. That is, if

E1, E2, . . . En

are independent events, then

P (E1 ∩ E2 . . . ∩ En) =
n∏

i=1
Ei

Disjoint events

If events A and B are mutually exclusive—that is, if that fact that either 1 of
them has occurred implies that the other cannot occur, then the 2 events are
disjoint. For example, in a single roll of a 6-sided die, rolling a 1 implies that
2 is not rolled—at least, not in the same roll—and vice versa. Note that this
does not imply that the 2 events are the only possible outcomes, but only that
each one precludes the other.

If we have 2 disjoint events, then the probability that one or the other occur is
the sum of their individual probability. This can be extended to more than 2
disjoint events as well. In symbolic terms, where

22

E1, E2, . . . En

are disjoint events (that is, P (Ei ∩ Ej) = 0, ∀i, j ∈ {1, 2, . . . , n}),

P (E1 ∪ E2 . . . ∪ En) =
n∑

i=1
Ei

Naïve probability

Related to concept of disjoint events is that of naïve probability. If an experiment
has a finite number of equally likely disjoint outcomes, and if there are n possible
outcomes, then each has a probability of 1/n. Further, we can compute the
probability the the outcome is a member of the set E by dividing the cardinality
of E by the cardinality of U , the set of all possible outcomes (aka the universe
of outcomes).

P (E) = |E|
|U |

For an example of a naïve probability calculation, see the royal flush example,
below.

Uniform discrete probability distributions

For some random experiments, the outcomes may be characterized by numeric
values, such that each possible outcome is a member of a specified finite set of
values. If these values fall within a specified range, with a constant difference
between each value and the value preceding and/or succeeding it, and if all of
the values are equally likely, then we have a special (and very useful) case of the
situation described in Naïve probability. This is a uniform discrete probability
distribution.

An example of this type of distribution, and this type of random experiment, is
found in the roll of a single fair die. In the case of a six-sided die, the possible
outcomes are the values 1 through 6, each with a probability of 1/6.

A Java method that samples a value from such a distribution could be written
as follows:

double discreteUniform(
double lowerBound, double interval, int n, Random rng) {

return lowerBound + rng.nextInt(n) * interval;
}

23

In this method, lowerBound is a parameter specifying the outcome with the mini-
mum possible value; interval is the spacing between possible outcome values; n
is the number of possible outcomes; rng is an instance of the java.util.Random
class (or a subclass of that), which can be used to generate general pseudoran-
dom values.

We might invoke the discreteUniform method to simulate a roll of a six-sided
die using code like the following:

Random rng = new Random();
int roll = discreteUniform(1, 1, 6, rng);

On the other hand, in this example, where the possible outcomes are all inte-
gral, it’s probably simpler just to use the Random.nextInt() method directly.
In fact, one of the most important points to remember about sampling from uni-
form discrete probability distributions is that the Random.nextInt(int bound)
method is a very useful building block. That method samples from the uniform
discrete distribution over the values {0, 1, . . . (bound − 1)}; the value returned
can be transformed arithmetically to sample from virtually any uniform discrete
distribution.

Non-uniform discrete probability distributions

If the outcome values of some random experiment are not evenly spaced, or all
such outcomes are not equally likely, but the set of values is finite, then we have
a non-uniform discrete probability distribution. A detailed discussion of such
distributions is beyond the scope of this document; however, it should be noted
that some such distributions are actually combinations of uniform distributions.

For example, the sum obtained from a roll of 2 six-sided dice is non-uniform,
because the possible values $ \left (2, 3, \ldots 12 \right)$ are not all equally
likely; however, we can still fall back on the concept of naïve probability. For
example, if we examine the values shown on the 2 dice, we see that there are a
total of 36 possible rolls, all equally likely. 6 of those rolls give a sum of 7; thus,
the probability of rolling a 7 is 6/36, or 1/6. On the other hand, there are only
2 possible rolls that give a sum of 3; the probability of rolling a 3 is therefore
2/36, or 1/18.

Continuous probability distributions

The sets of possible numerical outcomes for some random experiments are not
finite; instead, the outcome might take any value within a continuous range. In
such cases, it’s usually meaningless to talk about the probability of a specific
single value as an outcome; instead, we might examine the probability of an
outcome falling within a stated interval.

24

Typically, we express such a continuous probability distribution as a probability
density function, f(x), with these general constraints:

f(x) ≥ 0, −∞ < x < ∞∫ ∞

−∞
f(x) dx = 1

The probability of an outcome falling within some interval, [Xa, Xb], can be
expressed using a definite integral:

p(Xa ≤ x ≤ Xb) =
∫ Xb

Xa

f(x) dx

As is the case for discrete probability distributions, continuous distributions
come in uniform and non-uniform varieties; however, the general mathe-
matical statements above apply in both cases. In any event, an in-depth
discussion of continuous probability distributions is beyond the scope of this
introduction. However, we should note that just as Random.nextInt() is an
important building block for sampling from uniform discrete distributions,
Random.nextDouble() is a similarly useful building block for sampling from
uniform or non-uniform continuous distributions; for the special case of the
Gaussian distribution (aka normal distribution), Random.nextGaussian() is
even more directly applicable.

Combinations & permutations

Many computational problems involve enumerating (counting) the number of
combinations of k objects that can be selected from a set of n objects. For
example, we might be counting the number of 5-card hands that can be dealt
from a deck of 52 standard playing cards. Note that typically, we’re assuming
that each hand has no effect on subsequent hands—in other words, we’re count-
ing the number of distinct hands that might be obtained when each is drawn
from a full (and re-shuffled) deck. Also, we’re intentionally ignoring the order
of the cards in the hand itself. So the hand {2�, 5�, 10�, J�, A�} is not considered
distinct from {5�, 2�, J�, 10�, A�}.

The number of distinct combinations (without regard to order) of k objects that

can be selected from a set of n objects is denoted as C (n, k), Cn
k , nCk, or

(
n

k

)
,

and its value is

C (n, k) = n!
k! (n − k)!

(7)

25

Another way to express (7), useful for some computations, is

C (n, k) = n · (n − 1) · . . . · (n − k + 1)
1 · 2 · . . . · k

=
k∏

i=1

n − i + 1
i

Or, equivalently:

C (n, k) =
k−1∏
i=0

n − i

i + 1
(8)

For example, we can compute the number of distinct 5-card poker hands with
the following Java code, implementing (8):

int hands = 1;
for (int i = 0; i < 5; i++) {
hands *= 52 - i;
hands /= i + 1;

}
System.out.println(hands); // 2598960

(See Factorial for more information on the n! notation convention, and on com-
puting the factorial in Java.)

If all combinations are equally likely—as is the case by definition after a fair
shuffle of a deck of cards (for example)—then the probability of a given outcome
is simply the total number of combinations that include that outcome, divided by
the total number of combinations (see Naïve probability, above). For example,
there are 4 “royal flush” poker hands, and a total of 2,598,960 possible 5-card
hands; therefore the probability of being dealt a royal flush from a deck after a
fair shuffle is 4 / 2,598,960 � 0.00000153907.

If the order of the k objects is significant, then the number of permutations
(distinct orderings) of the k selected objects is k!. Therefore, the number of
permutations of k objects selected from a set of n objects (denoted as P (n, k),
P n

k , or nPk) is

P (n, k) = n!
k! (n − k)!

· k!

= n!
(n − k)!

26

Trigonometry

Right triangles

Figure 1: Right triangle used to define basic trigonometric relationships.

Trigonometric functions are initially defined in terms of the angles and sides in a
right triangle, for acute angles only—i.e. in the interval [0, π/2). By convention,
each vertex is identified by an upper-case letter (most commonly, A, B, and
C, for the two acute angles and the right angle, respectively), with the side
opposite identified by the same letter, but lower-case. Note that an upper-case
letter denotes not only a vertex, but the measure of the angle at that vertex;
similarly, a lower-case letter refers not only to the side itself, but to the length
of that side. Finally, the right angle is identified by a small square at vertex C.

All of the definitions in the following table are in reference to the triangle in
figure 1, above.

Measure Definition Java method

Sine sin A = a

c
double Math.sin(double angle)

Cosine cos A = b

c
double Math.cos(double angle)

Tangent tan A = a

b
double Math.tan(double angle)

Arcsine arcsin a

c
= A double Math.asin(double ratio)

Arccosine arccos b

c
= A double Math.acos(double ratio)

Arctangent arctan a

b
= A double Math.atan(double ratio)

Pythagorean theorem c =
√

a2 + b2 double Math.hypot(double a, double b)

27

Polar-Cartesian relationship

Figure 2: Position of point P shown in polar and Cartesian coordinates.

The position of a point P on a plane is usually expressed either with respect
to the X and Y axes—that is, in Cartesian coordinates—or with respect to a
pole (coincident with the origin of the Cartesian coordinate system) and a polar
axis (coincident with the positive X axis of the Cartesian coordinate system).
The coordinates used in the latter case are called polar coordinates, and consist
of a distance, r, measured from the pole, and an angle, θ, measured counter-
clockwise from the polar axis. When θ is in the interval [0, π/2), the x, y, and
r values form a right triangle, where θ is the angle opposite y. Recognizing
this, we can extend the trigonometric relationships beyond acute angles in an
intuitive fashion, by expressing them in terms of polar and Cartesian coordinates,
allowing x and y to take negative values, and allowing θ to take values outside
the interval [0, π/2).

All of the definitions in the following table are in reference to the polar and
Cartesian coordinate system used in the example shown in figure 2, above.

Measure Definition Java method

Sine sin θ = y

r
double Math.sin(double angle)

Cosine cos θ = x

r
double Math.cos(double angle)

Tangent tan θ = y

x
double Math.tan(double angle)

Arcsine arcsin y

r
= θ double Math.asin(double ratio)

Arccosine arccos x

r
= θ double Math.acos(double ratio)

Arctangent arctan y

x
= θ double Math.atan2(double y, double x)

Pythagorean theorem r =
√

x2 + y2 double Math.hypot(double x, double y)

Note that the tangent function has a period of π, instead of 2π (the period of

28

the sine and cosine functions). Thus, in order to properly distinguish between
θ values across the full [0, 2π) interval, the Math.atan2 method takes both y
and x as parameters, rather than just the ratio of the two. This also gives us a
clean way to evaluate the arctangent in cases where the ratio is not finite (e.g.
for θ = π/2 and θ = 3π/2).

29

	Mathematical Computations in Java
	Types
	Definitions
	Primitives
	Wrapper classes
	Classes for extended range or precision

	Basic operations
	Arithmetic operators defined by the Java language
	Sign-related operations
	Rounding operations
	Modulo operation (remainder)

	Exponents, roots, and logarithms
	Sequences
	Definition
	Length
	Recurrence relations
	Sum
	Product
	General case
	Factorial

	Sets
	Definition
	Cardinality
	The empty set
	Membership
	Equality
	Subsets & supersets
	Set-builder notation
	Union
	Intersection
	Difference (relative complement)
	Symmetric difference

	Probability
	Independent events
	Disjoint events
	Naïve probability
	Uniform discrete probability distributions
	Non-uniform discrete probability distributions
	Continuous probability distributions

	Combinations & permutations
	Trigonometry
	Right triangles
	Polar-Cartesian relationship

